- 开发者指南
- For pandas Users
- Pandas 实用手册
Pandas 实用手册
常见的 pandas 用法模式及其在 DataStore 中的对应实现。大多数代码无需改动即可直接运行!
数据加载
读取 CSV 文件
# Pandas
import pandas as pd
df = pd.read_csv("data.csv")
# DataStore - same!
from chdb import datastore as pd
df = pd.read_csv("data.csv")
读取多个文件
# Pandas
import glob
dfs = [pd.read_csv(f) for f in glob.glob("data/*.csv")]
df = pd.concat(dfs)
# DataStore - more efficient with glob pattern
df = pd.read_csv("data/*.csv")
筛选
单个条件
# Pandas and DataStore - identical
df[df['age'] > 25]
df[df['city'] == 'NYC']
df[df['name'].str.contains('John')]
多个条件
# AND
df[(df['age'] > 25) & (df['city'] == 'NYC')]
# OR
df[(df['age'] < 18) | (df['age'] > 65)]
# NOT
df[~(df['status'] == 'inactive')]
使用 query() 方法
# Pandas and DataStore - identical
df.query('age > 25 and city == "NYC"')
df.query('salary > 50000')
isin()
# Pandas and DataStore - identical
df[df['city'].isin(['NYC', 'LA', 'SF'])]
between() 方法
# Pandas and DataStore - identical
df[df['age'].between(18, 65)]
选择列
单列
# Pandas and DataStore - identical
df['name']
df.name # attribute access
多列
# Pandas and DataStore - identical
df[['name', 'age', 'city']]
选择与过滤
# Pandas and DataStore - identical
df[df['age'] > 25][['name', 'salary']]
# DataStore also supports SQL-style
df.filter(df['age'] > 25).select('name', 'salary')
排序
单列
# Pandas and DataStore - identical
df.sort_values('salary')
df.sort_values('salary', ascending=False)
多列
# Pandas and DataStore - identical
df.sort_values(['city', 'salary'], ascending=[True, False])
获取前/后 N 个
# Pandas and DataStore - identical
df.nlargest(10, 'salary')
df.nsmallest(5, 'age')
GroupBy 和聚合
简单的 GroupBy
# Pandas and DataStore - identical
df.groupby('city')['salary'].mean()
df.groupby('city')['salary'].sum()
df.groupby('city').size() # count
多种聚合
# Pandas and DataStore - identical
df.groupby('city')['salary'].agg(['sum', 'mean', 'count'])
df.groupby('city').agg({
'salary': ['sum', 'mean'],
'age': ['min', 'max']
})
命名聚合
# Pandas and DataStore - identical
df.groupby('city').agg(
total_salary=('salary', 'sum'),
avg_salary=('salary', 'mean'),
employee_count=('id', 'count')
)
多个分组键
# Pandas and DataStore - identical
df.groupby(['city', 'department'])['salary'].mean()
数据连接
内连接
# Pandas
pd.merge(df1, df2, on='id')
# DataStore - same API
pd.merge(df1, df2, on='id')
# DataStore also supports
df1.join(df2, on='id')
左连接
# Pandas and DataStore - identical
pd.merge(df1, df2, on='id', how='left')
按不同列进行连接
# Pandas and DataStore - identical
pd.merge(df1, df2, left_on='emp_id', right_on='id')
连接
# Pandas and DataStore - identical
pd.concat([df1, df2, df3])
pd.concat([df1, df2], axis=1)
字符串操作
大小写转换
# Pandas and DataStore - identical
df['name'].str.upper()
df['name'].str.lower()
df['name'].str.title()
子字符串
# Pandas and DataStore - identical
df['name'].str[:3] # First 3 characters
df['name'].str.slice(0, 3)
查找
# Pandas and DataStore - identical
df['name'].str.contains('John')
df['name'].str.startswith('A')
df['name'].str.endswith('son')
替换
# Pandas and DataStore - identical
df['text'].str.replace('old', 'new')
df['text'].str.replace(r'\d+', '', regex=True) # Remove digits
分割
# Pandas and DataStore - identical
df['name'].str.split(' ')
df['name'].str.split(' ', expand=True)
长度
# Pandas and DataStore - identical
df['name'].str.len()
日期时间操作
提取各个组件
# Pandas and DataStore - identical
df['date'].dt.year
df['date'].dt.month
df['date'].dt.day
df['date'].dt.dayofweek
df['date'].dt.hour
格式设置
# Pandas and DataStore - identical
df['date'].dt.strftime('%Y-%m-%d')
缺失数据
检查缺失值
# Pandas and DataStore - identical
df['col'].isna()
df['col'].notna()
df.isna().sum()
丢弃缺失值
# Pandas and DataStore - identical
df.dropna()
df.dropna(subset=['col1', 'col2'])
填充缺失值
# Pandas and DataStore - identical
df.fillna(0)
df.fillna({'col1': 0, 'col2': 'Unknown'})
df.fillna(method='ffill')
创建新列
简单赋值操作
# Pandas and DataStore - identical
df['total'] = df['price'] * df['quantity']
df['age_group'] = df['age'] // 10 * 10
使用 assign() 方法
# Pandas and DataStore - identical
df = df.assign(
total=df['price'] * df['quantity'],
is_adult=df['age'] >= 18
)
条件筛选(where/mask)
# Pandas and DataStore - identical
df['status'] = df['age'].where(df['age'] >= 18, 'minor')
使用 apply() 编写自定义逻辑
# Works, but triggers pandas execution
df['category'] = df['amount'].apply(lambda x: 'high' if x > 1000 else 'low')
# DataStore alternative (stays lazy)
df['category'] = (
df.when(df['amount'] > 1000, 'high')
.otherwise('low')
)
数据重塑
数据透视表
# Pandas and DataStore - identical
df.pivot_table(
values='amount',
index='region',
columns='product',
aggfunc='sum'
)
Melt(逆透视)
# Pandas and DataStore - identical
df.melt(
id_vars=['name'],
value_vars=['score1', 'score2', 'score3'],
var_name='test',
value_name='score'
)
Explode(展开)
# Pandas and DataStore - identical
df.explode('tags') # Expand array column
窗口函数
滚动窗口
# Pandas and DataStore - identical
df['rolling_avg'] = df['price'].rolling(window=7).mean()
df['rolling_sum'] = df['amount'].rolling(window=30).sum()
扩张窗口
# Pandas and DataStore - identical
df['cumsum'] = df['amount'].expanding().sum()
df['cummax'] = df['amount'].expanding().max()
Shift(位移)
# Pandas and DataStore - identical
df['prev_value'] = df['value'].shift(1) # Lag
df['next_value'] = df['value'].shift(-1) # Lead
差分
# Pandas and DataStore - identical
df['change'] = df['value'].diff()
df['pct_change'] = df['value'].pct_change()
输出
输出为 CSV
# Pandas and DataStore - identical
df.to_csv("output.csv", index=False)
输出为 Parquet
# Pandas and DataStore - identical
df.to_parquet("output.parquet")
转换为 pandas DataFrame
# DataStore specific
pandas_df = ds.to_df()
pandas_df = ds.to_pandas()
DataStore 附加功能
查看 SQL 语句
# DataStore only
print(ds.to_sql())
执行计划解析
# DataStore only
ds.explain()
ClickHouse 函数
# DataStore only - extra accessors
df['domain'] = df['url'].url.domain()
df['json_value'] = df['data'].json.get_string('key')
df['ip_valid'] = df['ip'].ip.is_ipv4_string()
通用 URI
# DataStore only - read from anywhere
ds = DataStore.uri("s3://bucket/data.parquet")
ds = DataStore.uri("mysql://user:pass@host/db/table")