- Debugging
- explain()
explain() 方法
explain() 方法会显示 DataStore 查询的执行计划,帮助你理解将执行哪些操作以及会生成哪些 SQL。
基本用法
from chdb import datastore as pd
ds = pd.read_csv("sales.csv")
query = (ds
.filter(ds['amount'] > 1000)
.groupby('region')
.agg({'amount': ['sum', 'mean']})
.sort('sum', ascending=False)
)
# View execution plan
query.explain()
语法
explain(verbose=False) -> None
参数:
| 参数名 | 类型 | 默认值 | 描述 |
|---|---|---|---|
verbose | bool | False | 显示更多元数据 |
输出格式
标准输出
================================================================================
Execution Plan (in execution order)
================================================================================
[1] 📊 Data Source: file('sales.csv', 'csv')
Operations:
────────────────────────────────────────────────────────────────────────────────
️ Segment 1 [chDB] (from source): Operations 2-5
️ Note: SQL operations after Pandas ops use Python() table function
[2] 🚀 [chDB] WHERE: "amount" > 1000
[3] 🚀 [chDB] GROUP BY: region
[4] 🚀 [chDB] AGGREGATE: sum(amount), avg(amount)
[5] 🚀 [chDB] ORDER BY: sum DESC
────────────────────────────────────────────────────────────────────────────────
Final State: 📊 Pending (lazy, not yet executed)
└─> Will execute when print(), .to_df(), .execute() is called
────────────────────────────────────────────────────────────────────────────────
Generated SQL Query:
────────────────────────────────────────────────────────────────────────────────
SELECT region, SUM(amount) AS sum, AVG(amount) AS mean
FROM file('sales.csv', 'csv')
WHERE "amount" > 1000
GROUP BY region
ORDER BY sum DESC
================================================================================
图标说明
| 图标 | 含义 |
|---|---|
| 📊 | 数据源 |
| 🚀 | chDB(SQL)操作 |
| 🐼 | pandas 操作 |
详细输出
query.explain(verbose=True)
详细模式会为每个操作显示更多细节,包括带有内部行顺序跟踪机制的完整 SQL 查询。
三个执行阶段
EXPLAIN 的输出将操作分为三个阶段:
阶段 1:SQL 查询构建(惰性执行)
将被编译为 SQL 的操作:
1. Source: file('sales.csv', 'CSVWithNames')
2. Filter: amount > 1000
3. GroupBy: region
4. Aggregate: sum(amount)
阶段 2:执行点
当触发器被触发时:
5. Execute SQL -> DataFrame
Trigger: to_df() called
阶段 3:DataFrame 操作
执行完成后的操作:
6. [pandas] pivot_table(...)
7. [pandas] apply(custom_func)
理解查询计划
源信息
Source: file('sales.csv', 'CSVWithNames')
file()- ClickHouse 的 file() 表函数'CSVWithNames'- 带表头的文件格式
其他数据源类型:
Source: s3('bucket/data.parquet', ...)
Source: mysql('host', 'db', 'table', ...)
Source: __dataframe__ (pandas DataFrame input)
过滤操作
Filter: amount > 1000 AND status = 'active'
显示将应用的 WHERE 子句。
GROUP BY 与聚合
GroupBy: region, category
Aggregate: sum(amount), avg(amount), count(id)
显示 GROUP BY 所使用的列和聚合函数。
排序操作
Sort: sum DESC, region ASC
展示 ORDER BY 子句。
LIMIT 操作
Limit: 10
Offset: 100
显示 LIMIT 和 OFFSET。
引擎信息
启用详细模式时,可以看到将使用的引擎:
Filter: amount > 1000
- Engine: chdb
- Pushdown: Yes
Apply: custom_function
- Engine: pandas
- Pushdown: No
下推
- 是:操作将在数据源侧(SQL)执行
- 否:操作需要在 pandas 中执行
示例
简单查询
ds = pd.read_csv("data.csv")
ds.filter(ds['age'] > 25).explain()
================================================================================
Execution Plan (in execution order)
================================================================================
[1] 📊 Data Source: file('data.csv', 'csv')
Operations:
────────────────────────────────────────────────────────────────────────────────
️ Segment 1 [chDB] (from source): Operations 2-2
[2] 🚀 [chDB] WHERE: "age" > 25
────────────────────────────────────────────────────────────────────────────────
Generated SQL Query:
────────────────────────────────────────────────────────────────────────────────
SELECT * FROM file('data.csv', 'csv') WHERE "age" > 25
================================================================================
复杂聚合
query = (ds
.filter(ds['date'] >= '2024-01-01')
.filter(ds['amount'] > 100)
.select('region', 'category', 'amount')
.groupby('region', 'category')
.agg({
'amount': ['sum', 'mean', 'count']
})
.sort('sum', ascending=False)
.limit(20)
)
query.explain()
================================================================================
Execution Plan (in execution order)
================================================================================
[1] 📊 Data Source: file('sales.csv', 'csv')
Operations:
────────────────────────────────────────────────────────────────────────────────
️ Segment 1 [chDB] (from source): Operations 2-8
[2] 🚀 [chDB] WHERE: "date" >= '2024-01-01'
[3] 🚀 [chDB] WHERE: "amount" > 100
[4] 🚀 [chDB] SELECT: region, category, amount
[5] 🚀 [chDB] GROUP BY: region, category
[6] 🚀 [chDB] AGGREGATE: sum(amount), avg(amount), count(amount)
[7] 🚀 [chDB] ORDER BY: sum DESC
[8] 🚀 [chDB] LIMIT: 20
────────────────────────────────────────────────────────────────────────────────
Generated SQL Query:
────────────────────────────────────────────────────────────────────────────────
SELECT region, category,
SUM(amount) AS sum,
AVG(amount) AS mean,
COUNT(amount) AS count
FROM file('sales.csv', 'csv')
WHERE "date" >= '2024-01-01' AND "amount" > 100
GROUP BY region, category
ORDER BY sum DESC
LIMIT 20
================================================================================
混合使用 SQL 和 pandas
当操作无法完全下推到 SQL 时,查询计划会显示多个阶段:
query = (ds
.filter(ds['age'] > 25) # SQL
.groupby('city') # SQL
.agg({'salary': 'mean'}) # SQL
.apply(lambda x: x * 1.1) # pandas (triggers segment split)
.filter(ds['mean'] > 50000) # SQL (new segment)
)
query.explain()
================================================================================
Execution Plan (in execution order)
================================================================================
[1] 📊 Data Source: file('data.csv', 'csv')
Operations:
────────────────────────────────────────────────────────────────────────────────
️ Segment 1 [chDB] (from source): Operations 2-4
️ Segment 2 [Pandas] (on DataFrame): Operation 5
️ Segment 3 [chDB] (on DataFrame): Operation 6
️ Note: SQL operations after Pandas ops use Python() table function
[2] 🚀 [chDB] WHERE: "age" > 25
[3] 🚀 [chDB] GROUP BY: city
[4] 🚀 [chDB] AGGREGATE: avg(salary)
[5] 🐼 [Pandas] APPLY: lambda
[6] 🚀 [chDB] WHERE: "mean" > 50000
================================================================================
使用 explain() 调试
验证过滤逻辑
# Verify your filter is correct
query = ds.filter((ds['age'] > 25) & (ds['city'] == 'NYC'))
query.explain()
# Output shows: Filter: age > 25 AND city = 'NYC'
检查列选择
# Check column pruning
query = ds.select('name', 'age').filter(ds['age'] > 25)
query.explain()
# Output shows: SELECT name, age FROM ... WHERE age > 25
理解聚合
# Check aggregation functions
query = ds.groupby('dept').agg({'salary': ['sum', 'mean', 'std']})
query.explain()
# Output shows: SELECT dept, SUM(salary), AVG(salary), stddevPop(salary)
最佳实践
1. 在执行大查询之前先检查
# Always explain first for large data
query = ds.complex_pipeline()
query.explain() # Check plan
# If plan looks correct
result = query.to_df() # Execute
2. 使用详细输出(verbose)进行调试
# When something seems wrong
query.explain(verbose=True)
# Shows engine selection and pushdown info
3. 与 to_sql() 的对比
# explain() shows the plan
query.explain()
# to_sql() shows just the SQL
print(query.to_sql())
# Both useful for different purposes
4. 检查下推情况
# Verbose mode shows if operations are pushed down
query.explain(verbose=True)
# If Pushdown: No, operation runs in pandas
# Consider restructuring query for better performance